MULTIVESSEL DISEASE, CORONARY REVASCULARIZATION DECISION - HEMODYNAMIC ASSESSMENT

Respublika Diaqnostika Mərkəzi, t.ü.f.d Xəlilov Şahin
12.10.2023
Multivessel coronary artery disease, defined as significant stenosis in two or more major coronary arteries.

The diagnosis and treatment of multivessel disease have evolved in the PCI era from solely a visual estimation of ischemic risk to a functional evaluation during angiography.
LIMITATIONS OF CORONARY ANGIOGRAPHY

- Interpretation is highly subjective
- Cannot accurately predict physiologic significance, especially for intermediate lesions (40-70%)
- Identification of normal and diseased segments is complicated by diffuse disease
- Artifacts of contrast streaming
- Image foreshortening
- Overlapping vessels
FRACTIONAL FLOW RESERVE (FFR) = \(\frac{P_d}{P_a} \)

The resistance to flow through a stenosis results in energy loss.

Energy loss produces pressure loss distal to the stenosis and thus a pressure gradient across the narrowed segment.
FRACTIONAL FLOW RESERVE (FFR) = Pd/Pa

- Normal value 1
- An FFR value 0.6 means the maximum myocardial flow across the stenosis is only 60% of what it should be without stenosis
- An FFR value <0.75 is associated with inducible ischemia (specificity 100%)
 Positive assessment indicates a significant functional stenosis, suggesting the need for coronary revascularization to improve blood flow and reduce the risk of adverse cardiac events.
- An FFR value >0.80 indicates absence of inducible ischemia (sensitivity 90%)
 Negative assessment indicates a non-significant functional stenosis, implying that revascularization may not be necessary, and medical management or observation may be appropriate.
FFR İS MEASURED DURING A MAXİMALLY İNDUCED HYPEREREMİA

- Epicardial and resistance arteries have to be vasodilated
- Epicardial vessels are dilated using a bolus of 100-200mcg of intracoronary nitroglycerine at least 30 seconds before the first measurement
- Hyperemia is induced in the resistance vessels using adenosine (IC or IV) or papaverine (IC)
Hyperemic Agents for FFR

<table>
<thead>
<tr>
<th></th>
<th>Adenosine</th>
<th>Adenosine</th>
<th>Papaverine</th>
<th>NTP</th>
<th>Regadenoson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route</td>
<td>IV</td>
<td>IC</td>
<td>IC</td>
<td>IC</td>
<td>IV</td>
</tr>
<tr>
<td>Dosage</td>
<td>140 mcg/kg/min</td>
<td>200 mcg LCA, 100 mcg RCA</td>
<td>15 mcg LCA, 10 mcg RCA</td>
<td>50-100 mcg</td>
<td>0.4 mg</td>
</tr>
<tr>
<td>Half Life</td>
<td>1-2 min</td>
<td>30-60 sec</td>
<td>2 min</td>
<td>1-2 min</td>
<td>2-4 min (up to 30 min)</td>
</tr>
<tr>
<td>Time to Max Hyperemia</td>
<td>< 1-2 min</td>
<td>5-10 sec</td>
<td>20-60 sec</td>
<td>10-20 sec</td>
<td>1-4 min</td>
</tr>
<tr>
<td>Advantage</td>
<td>GOLD STANDARD</td>
<td>Short action</td>
<td>Short action</td>
<td>Short action</td>
<td>IV bolus</td>
</tr>
<tr>
<td>Disadvantage</td>
<td>↓BP, chest burning</td>
<td>AV Block, ↓BP</td>
<td>Torsades, ↓BP</td>
<td>↓BP</td>
<td>↑HR, ?redose, long action</td>
</tr>
</tbody>
</table>
FFR TECHNIQUE - CATHETERS

- Diagnostic catheters cannot be used to measure FFR:

 ✓ pressure measurement can be inaccurate
 ✓ the wire manipulation is met with friction due to smaller internal diameters compared to guide catheters

- The main advantage of guide catheters is that PCI is immediately possible if required

- Guide catheters with side holes should not be used:

 ✓ it can create a false gradient between the side holes and the tip of catheter creating a false positive FFR
 ✓ vasodilatory agent may be flushed into the aorta instead of the coronary arthery
FRACTIONAL FLOW RESERVE (FFR)
RELATION BETWEEN FFR AND Viable MYOCARDIUM

If a stenotic vessel supplies a larger viable myocardial mass, there will be a larger hyperemic flow during maximal vasodilation resulting in a greater gradient between Pd and Pa, and thus, a lower value of FFR.

Haemodynamic significance of a lesion is dependent on its perfusion territory
Rationale for Physiologic Assessment of Coronary Stenosis

1. Defining ischemia-causing stenosis

2. Change in clinical management

3. Improved outcomes
The purpose of this study was to investigate the appropriateness of stenting a functionally nonsignificant intermediate stenosis.

- Patients with single vessel stenosis and FFR > 0.75 who did not undergo PCI had excellent outcomes.
- The risk of cardiac death or MI related to the stenosis was <1% per year and was not reduced with PCI.
- In contrast, patients with single vessel stenosis and FFR < 0.75 are 5x more likely to experience cardiac death or MI within 5 years, despite undergoing revascularization.
FAME Study (Fractional Flow Reserve versus Angiography for Guiding Percutaneous Coronary Intervention)

✓ 1005 patients (all with multivessel disease)
✓ At least 2 stenoses >50% in 2 or 3 major coronary artery disease, amenable for stenting
✓ Exclusion criteria: left main disease or previous bypass surgery, STEMI with CK>1000 U/L within last 5 days, extremely tortuous or calcified coronary arteries

Routine measurement of FFR in patients with MVD who are undergoing PCI with drug-eluting stents significantly reduces the rate of the composite end point of death, nonfatal myocardial infarction, and repeat revascularization at 1 year.
FAME 2 Trial (stable coronary artery disease)

• A total of 888 patients underwent randomization (447 patients in the PCI group and 441 in the medical-therapy group)

• All patients with stable coronary artery disease (*multivessel disease consisting of 26% and 22% of patients*)

FFR-guided PCI vs optimal medical therapy alone

Trial stopped prematurely due to a significantly lower rate of death, myocardial infarction, or urgent revascularization in the FFR-guided PCI group of the study at 2 years.
NON-HYPEREMIC PRESSURE RATIOS (NHPR)

Although FFR is the gold standard in invasive physiologic assessment, its clinical and economical benefits have been proven, it remains underutilized (~6% of patients undergoing PCI for intermediate lesions)

- Operator reluctance to delay procedures (especially in vessels with multiple lesions)
- Hospital costs (high price for single FFR-wire: 600-800 euro)
- Conceptual scepticism
- Side effects of hyperemic pharmacologic agents

NYPR were developed as an alternative to FFR
NON-HYPEREMIC PRESSURE RATIOS (NHPR)

The resting distal/aortic pressure over either the whole cardiac cycle or confined to diastole only

- iFR (average P_d/P_a during the wave-free period)
- dPR (diastolic pressure ratio)
- DFR (diastolic hyperemia-free ratio)
- RFR (resting full-cycle ratio)
Instantaneous Wave-Free Ratio (iFR)

iFR - measures the ratio of the average distal coronary pressure to the average aortic pressure during a specific period of the cardiac cycle, known as the diastolic "wave-free period" (beginning 25% of the way into diastole and ending 5ms before the end of diastole). In this period microvascular resistance is naturally minimized without the need of hyperemia induced by the administration of a vasodilator.

\[iFR = \frac{P_d_{\text{wave free period}}}{P_a_{\text{wave free period}}} \]

ISHEMIC THRESHOLD 0.89
Instantaneous Wave-Free Ratio (iFR)
✓ iFR offers a more convenient and cost-effective alternative to FFR

✓ iFR does not require the administration of a pharmacological vasodilator to induce hyperemia. It eliminates the hyperemia-induced discomfort for the patient

✓ iFR can be enhanced by iFR-pullback. It is especially useful in diffuse disease and serial lesions, which provides the possibility to display iFR changes over the course of the vessel to create a hemodynamic map (individual estimation of each stenosis)

✓ Angiography co-registration available
Pull back pressure recordings. (Left), diffuse disease. (Right), focal step up in distal vessel with no gradient across circumfex ostium
Two large multicenter studies (DEFINE-FLAIR and SWEDHEART) proved the non-inferiority of iFR towards FFR.
DEFINE-FLAIR STUDY

✓ Multicenter, international, randomized, blinded study
✓ Primary endpoint: 1-year risk for MACE (cardiovascular death, nonfatal myocardial infarction, unplanned revascularization)
✓ 2492 patients were included, 1242 in the iFR and 1250 in the FFR-group.

The 1-year analysis showed comparable results regarding the endpoints, confirming the non-inferiority of iFR towards FFR.

✓ The length of the procedure time was significantly shorter in the iFR-group (iFR 40.5 min, FFR: 45.0 min; P < 0.001)
✓ Less patients suffered from adverse effects like angina pectoris and dyspnea (3.1% vs 30.8%, P < 0.001)
✓ When compared to FFR, iFR was identified as more economically advantageous.
SWEDEHEART STUDY

- Multicenter, randomized, clinical study
- **Primary endpoint:** 1-year risk for MACE (cardiovascular death, nonfatal myocardial infarction, unplanned revascularization)
- 2037 patients, 1019 received iFR and 1018 received FFR.
- **Major inclusion criteria:** Patients with suspected stable angina pectoris or unstable angina pectoris/NSTEMI with a clinical indication for physiology-guided assessment of coronary lesions (30-80% stenosis grade)
- **Major exclusion criteria:**
 - Known terminal disease with a life expectancy <1 year
 - Unstable hemodynamics (Killip class III-IV)
 - Inability to tolerate adenosine
 - Previous CABG with patent graft to the interrogated vessel
 - Heavily calcified or tortuous vessel where inability to cross the lesion with a pressure wire was expected
The 1-year analysis of endpoints confirmed the non-inferiority of the iFR-method.

- Especially in uncertain cases, where iFR and FFR results differ, the data indicate that iFR provides more accurate results.
- iFR was superior to FFR regarding procedural discomfort.
SAFETY OF INTRACORONARY SENSOR-WIRE MEASUREMENTS

- **Transient Bradycardia**: 1.7%
- **Coronary Spasm**: 2%
- **Ventricular Fibrillation**: 0.2%
FFR initially adopted as a Class IA recommendation in the ESC/EACTS guidelines of 2014 on myocardial revascularization

Besides FFR, iFR adopted as a CLASS IA recommendation in the ESC/EACTS guidelines of 2018.
Diqqətinizə görə təşəkkürlər!